Telegram Group & Telegram Channel
Какие методы и техники вы бы использовали для решения проблемы затухающего градиента при обучении модели seq2seq, особенно когда входная последовательность длиннее, чем выходная, и какие меры предприняли бы, чтобы справиться с потерей информации на начальных этапах декодирования?

1. Архитектурные модификации: использование архитектур, которые способствуют передаче информации на большие расстояния, таких как архитектуры с аттеншн-механизмами (например, Transformer). Аттеншн-механизм позволяет модели фокусироваться на разных частях входной последовательности в процессе декодирования, что уменьшает вероятность затухания градиента.
2. Skip Connections: Включение пропускающих соединений в архитектуру, чтобы градиент мог путешествовать на более длинные расстояния между входом и выходом.
3. Residual Connections: Аналогично skip connections, но с добавлением остаточных соединений, что позволяет сети изучать разницу между текущим состоянием и предыдущим, помогая справляться с затухающим градиентом.
4. Layer Normalization и Batch Normalization: Нормализация слоев и батчей может помочь уменьшить влияние затухания градиента на обучение.
5. Scheduled Sampling: Использование стратегии постепенного внедрения сгенерированных токенов в качестве входа вместо реальных токенов для учебных данных. Это может помочь модели привыкнуть к собственным предсказаниям.
6. Gradient Clipping: Ограничение нормы градиента, чтобы избежать роста градиента.



tg-me.com/ds_interview_lib/31
Create:
Last Update:

Какие методы и техники вы бы использовали для решения проблемы затухающего градиента при обучении модели seq2seq, особенно когда входная последовательность длиннее, чем выходная, и какие меры предприняли бы, чтобы справиться с потерей информации на начальных этапах декодирования?

1. Архитектурные модификации: использование архитектур, которые способствуют передаче информации на большие расстояния, таких как архитектуры с аттеншн-механизмами (например, Transformer). Аттеншн-механизм позволяет модели фокусироваться на разных частях входной последовательности в процессе декодирования, что уменьшает вероятность затухания градиента.
2. Skip Connections: Включение пропускающих соединений в архитектуру, чтобы градиент мог путешествовать на более длинные расстояния между входом и выходом.
3. Residual Connections: Аналогично skip connections, но с добавлением остаточных соединений, что позволяет сети изучать разницу между текущим состоянием и предыдущим, помогая справляться с затухающим градиентом.
4. Layer Normalization и Batch Normalization: Нормализация слоев и батчей может помочь уменьшить влияние затухания градиента на обучение.
5. Scheduled Sampling: Использование стратегии постепенного внедрения сгенерированных токенов в качестве входа вместо реальных токенов для учебных данных. Это может помочь модели привыкнуть к собственным предсказаниям.
6. Gradient Clipping: Ограничение нормы градиента, чтобы избежать роста градиента.

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/31

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Pinterest (PINS) Stock Sinks As Market Gains

Pinterest (PINS) closed at $71.75 in the latest trading session, marking a -0.18% move from the prior day. This change lagged the S&P 500's daily gain of 0.1%. Meanwhile, the Dow gained 0.9%, and the Nasdaq, a tech-heavy index, lost 0.59%. Heading into today, shares of the digital pinboard and shopping tool company had lost 17.41% over the past month, lagging the Computer and Technology sector's loss of 5.38% and the S&P 500's gain of 0.71% in that time. Investors will be hoping for strength from PINS as it approaches its next earnings release. The company is expected to report EPS of $0.07, up 170% from the prior-year quarter. Our most recent consensus estimate is calling for quarterly revenue of $467.87 million, up 72.05% from the year-ago period.

Start with a fresh view of investing strategy. The combination of risks and fads this quarter looks to be topping. That means the future is ready to move in.Likely, there will not be a wholesale shift. Company actions will aim to benefit from economic growth, inflationary pressures and a return of market-determined interest rates. In turn, all of that should drive the stock market and investment returns higher.

Библиотека собеса по Data Science | вопросы с собеседований from es


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA